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    Chapter 3   
 Cancer Classifi cation and Molecular Signature 
Identifi cation 

                  Cancer is a family of diseases that share a common set of characteristics such 
as  reprogrammed energy metabolism, uncontrolled cell growth, tumor angio-
genesis and avoidance of immune destruction, referred to as cancer hallmarks, 
as introduced in Chap.   1    . Based on their original cell types, cancers are clas-
sified into five classes: (1)  carcinoma , which begins in epithelial cells and 
represents the majority of the human cancer cases; (2)  sarcoma , derived from 
mesenchymal cells, e.g., connective tissue cells such as fibroblasts; (3)  lym-
phoma, leukemia  and  myeloma , originating in hematopoietic or blood-forming 
cells; (4)  germ cell tumors , developing, as the name implies, from germ cells; 
and (5)  neuroblastoma ,  glioma, glioblastoma  and others derived from cells of 
the central and peripheral nervous system and denoted as  neuroectodermal  
tumors because of their beginning in the early embryo. Each class may consist 
of cancers of different types. For example, carcinoma comprises adenocarci-
noma, basal-cell carcinoma, small-cell carcinoma and squamous cell carci-
noma, independent of their underlying tissue types. Cancers of the same type 
and developing in the same tissue may have distinct properties in terms of 
their growth patterns, malignance levels, survival rates and possibly even dif-
ferent underlying mechanisms. They may respond differently to the same drug 
treatment and hence have different mortality rates. As of now, over 200 types 
of human cancers have been identified and characterized (Stewart and Kleihues 
 2003 ), the majority of which are determined based on the location, the origi-
nating cell type and cell morphology. It is now becoming evident that this type 
of classification, in large part subjective, is not adequate for developing per-
sonalized treatment plans, which are becoming increasingly desirable and 
clearly represents the future of cancer medicine. 

 With the rapid accumulation of high-throughput  omic  data for cancer, particu-
larly transcriptomic and genomic data, it is now feasible to classify cancers based on 
their molecular level information. For example, this can be based on distinct expres-
sion patterns of certain genes or pathways shared only by samples of the same c ancer 
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type, or combinations of mutations that tend to co-occur (or be selected, to be more 
accurate) in certain cancer types. Such type-defi ning expression or mutation patterns 
of genes are referred to as the  signature  of a cancer type. This idea should be appli-
cable to every kind of cancer as has been done for a few cancer types, such as 
Oncotype DX for one form of breast cancer (Albain et al.  2010 ), as long as transcrip-
tomic or genomic mutation data are available for the cancer category. Similarly, it 
should also be possible to derive molecular signatures for cancer grades and cancer 
stages, with the former referring to the level of malignancy of a tumor and the latter 
representing the location of the cancer in its development towards the terminal stage, 
i.e., metastasis. Compared to the traditional defi nitions of cancer types, molecular 
signatures, as outlined here, can potentially provide more accurate characterization 
of a cancer and even reveal its underlying mechanisms, hence possibly having sig-
nifi cant implications to cancer treatment and prognosis prediction. Here we use 
gene-expression data as an example to illustrate how cancer typing, staging and 
grading can be done using  omic  data, which could potentially lead to substantially 
more accurate characterization of cancers of different types, grades and stages. 
Similar ideas should be applicable to mutation-based cancer classifi cation. 

3.1     Cancer Types, Grades and Stages 

 The earliest description of cancer can be traced back to 2500 BC by Egyptian 
 physician Imhotep (Mukherjee  2010 ). Evidence exists suggesting that Egyptian 
p hysicians at the time could distinguish between benign and malignant tumors. The 
study of cancer as a scientifi c discipline came in the nineteenth century when micro-
scopes became widely available to physicians and surgeons. Microscopic pathology, 
pioneered by German doctor Rudolf Virchow, laid the foundation for the develop-
ment of cancer surgery as practiced now. Since then, cancer tissues removed from 
patients are microscopically examined and classifi ed based on their morphological 
characteristics. Scientifi c oncology was born out of the debate concerning a few 
competing hypotheses regarding the possible causes of cancer in the late 1800s 
through the early 1900s. It developed based on fi ndings that linked microscopic 
observations made on cancer tissues to clinical data during the course of the disease 
development. The popular hypotheses included: (1) one proposed by Stahl and 
Hoffman, which suggested that cancer was caused by coagulated lymph; (2) a pro-
posal by Johannes Muller who suggested that cancer cells arose from budding ele-
ments between normal tissues; and (3) the theory developed by Rudolph Virchow, 
which considered cancer as a disease of cells. The next major advance in attempts to 
elucidate the possible causes of a cancer came in the 1920s when the German 
 biochemist Otto Warburg observed that cancer cells rely heavily on glycolytic fer-
mentation rather than the more effi cient oxidative phosphorylation for ATP genera-
tion, even when oxygen is available. This metabolic alteration is referred to as the 
 Warburg effect  (Warburg  1956 ) and remains under active investigation as discussed 
in depth in Chap.   5    . Based on the accelerated glycolysis, some 10 to 20-fold over that 
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of normal cells, Warburg attributed cancer to a malfunctioning mitochondria-induced 
metabolic disease. The discovery of oncogenes in 1970s by Bishop and Varmus, 
along with the discovery of tumor-suppressor genes by A. G. Knudson also in 1970s, 
represented the next key advancement, which started the era of classifying cancer as 
a genetic disease. 

 Early classifi cation of cancers was based on a cancer’s location, such as lung 
cancer, skin cancer or blood cancer (e.g., leukemia). Over time, oncologists began 
to realize that different types of cancers can develop from the same organ. The earli-
est classifi cation of cancers from the same organ, in this case bone marrow which 
houses the hematopoietic stem cells, can be traced back to the early 1900s when it 
was found that there were at least four types of leukemia, namely ALL (acute lym-
phoblastic leukemia), AML (acute myelogenous leukemia), CLL (chronic lympho-
blastic leukemia) and CML. This realization occurred about 50 years after the 
diagnosis of the fi rst documented leukemia case (Beutler  2001 ). For other cancers, 
recognition of multiple cancer types originating from the same organ came rather 
late. For example, small-cell lung cancer was not considered as a separate type of 
lung cancer from the more prevalent and less aggressive non-small cell lung cancer 
until the 1960s. Gastric cancers were found to have at least two subtypes, intestinal 
and diffuse, in 1965 (Lauren  1965 ). It is worth noting that correct diagnosis of a 
cancer type has signifi cant implications to designing the most effective treatment 
protocols and prognosis. For example, statistics show that the current 5-year sur-
vival rates for adult ALL, AML, CLL and CML patients are 50 %, 40 %, 75 % and 
90 %, respectively, and the treatment plan for each of them is quite different. ALL 
is typically treated using chemotherapy followed by anti-metabolite drugs; AML is 
generally treated using chemotherapy; CLL, while incurable, is often being con-
trolled with chemotherapy using a combination of fl udarabine and alkylating agents; 
and CML is, in most cases, successfully treated using the so called “miracle” drug 
Gleevec, or else newer and improved drugs. 

 The multistage nature of a cancer was fi rst discovered by Japanese researchers 
Yamagiwa and Ichikawa in the beginning of the twentieth century (Yamagiwa and 
Ichikawa  1918 ). Basically for most cancer types, the histological stage refers to the 
extent the cancer has spread, which is typically numbered from stage I through stage 
IV, with IV representing the most advanced stage. The stage of a cancer is an impor-
tant predictor for survival, with the treatment plan often determined based on stag-
ing. Currently the stage of a cancer is generally determined by pathological analysis 
from a biopsied specimen of the cancer tissue, including lymph nodes, as well as 
analysis by imaging techniques with the results interpreted by radiologists; only 
limited molecular level information such as the expression levels of a few marker 
genes as determined by immune-detection. 

 In addition to type and stage, cancer grade is another important parameter that has 
been used by pathologists to represent the level of malignancy of a given cancer, 
determined based on surgical specimens. This parameter is largely independent of 
the type and the stage of a cancer. A popular grading system uses four grades: 
(1) G1 (highly differentiated), (2) G2 (moderately differentiated), (3) G3 (poorly dif-
ferentiated) and (4) G4 (undifferentiated), with G4 representing the most  malignant. 

3.1 Cancer Types, Grades and Stages
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The level of differentiation refers to the maturity of a cell in  developmental biology. 
In the current context, the more differentiated cancer cells resemble more of the 
normal mature cells, and they tend to grow and spread at slower rates than undiffer-
entiated or poorly differentiated cancer cells. The grade of a cancer provides another 
key indicator for prognosis. While the term seems to be defi ned in terms of cellular 
differentiation, the actual determination of the cancer grade is often made based on 
a combination of the cellular appearance (degree of abnormality), the rate of growth 
and the degree of invasiveness. 

 The current availability of signifi cant quantities of molecular level  omic  data on 
cancer, such as transcriptomic, genomic, epigenomic and metabolomic data, pro-
vides unprecedented opportunities for developing molecular-level signatures for 
each known cancer type, grade and stage, and, if needed, possibly reclassifying 
some of the previously determined cancer types, stages and/or grades. This has the 
potential to lead to more accurate classifi cations of a cancer for the purpose of 
improved treatment design and prognosis evaluation.  

3.2       Computational Cancer Typing, Staging and Grading 
Through Data Classifi cation 

 The main question addressed here is: For a given set of cancer samples, each marked 
with a specifi c type, stage or grade determined by pathologists , is it possible to 
identify common characteristics,  e.g. , in terms of gene expression patterns among 
samples having the same class label ? If the answer is yes, such a capability could 
potentially be used to accurately defi ne the type or subtype, stage or substage, grade 
or subgrade of a cancer. In the following sections, we demonstrate how this could 
be done to possibly provide a new way of classifying cancer based on molecular 
level data. 

3.2.1           Cancer Typing  

 A basis for gene-expression data-based cancer typing is that cancers of various 
types have their distinct phenotypic characteristics such as differences in cellular 
shape, growth rates and responses to the same treatment regiments, and possibly 
distinct underlying mechanisms, while samples of the same type tend to share com-
mon characteristics. These phenotypic and mechanistic commonalities among can-
cer cases of the same type as well as differences across multiple cancer types are 
realized through molecular level activities and hence should be in general refl ected 
by the expression patterns of some genes. A key in accomplishing cancer typing 
based on gene-expression data is to identify those genes whose expression patterns 
are shared by samples of the same type but not shared by samples of the other can-
cer types. This problem can be modeled computationally in various ways, 
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depending on the specifi c purpose(s) of the cancer typing. For example, if the goal 
is to identify the defi ning characteristics of a cancer type, one may decide to identify 
a maximal gene set, whose expression patterns are similar across all the (available) 
cancer samples of the same type and different from those of other types. If, instead, 
the goal is to identify distinguishing characteristics between two (or more) types of 
cancers, one may want to fi nd a minimal set of genes whose expression patterns can 
delineate among samples between the two (or more) cancer types, which may not 
necessarily contain any information about the distinct mechanisms of the different 
cancer types. 

 We now present one example to model the cancer typing problem and to illus-
trate how such a problem can be solved computationally. Consider two subtypes of 
gastric cancer, the intestinal (C 1 ) and diffuse (C 2 ) subtypes, each having genome- 
scale gene-expression data collected using the same platform on paired cancer and 
matching control tissue samples from the same patients. For each patient one can 
obtain the fold-change information for any gene between its expression in a cancer 
and its matching control, which is typically calculated as the logarithm of the ratio 
between the two expression levels, referred to as the  log-ratio  throughout this book. 
The present goal is to fi nd a minimal subset of genes out of the total of ~20,000 
human genes, whose expression patterns can unequivocally distinguish between the 
two subtypes, C 1  and C 2 . Specifi cally, the aim is to identify a set G of genes and a 
discriminant function F() so that F(G(x)) > 0 for x ∈ C 1  and F(G(x)) < 0 for x ∈ C 2  
for as many x ∈ C 1  ∪ C 2  as possible, where G(x) represents the list of fold-changes 
in expression levels of genes in G between cancer tissue x and its matching control. 
There are many classes of discriminant functions that can be used for solving this 
classifi cation problem. Here a specifi c class of functions is used, the linear  support 
vector machine  (SVM) (Cortes and Vapnik  1995 ). The goal now becomes that of 
locating a minimal set G of genes and an SVM that achieve the best classifi cation 
with the misclassifi cation rate lower than a pre-defi ned threshold δ. 

 One method of solving this problem is by going through all combinations of  K  
genes among all the human genes, searching from  K  = 1 and up until an SVM-based 
classifi er and a  K -gene set G are found, which achieve the desired classifi cation 
accuracy defi ned by δ. In practice, the search will not include all the human genes 
since the majority will not be expressed for any specifi c tissue type. For this prob-
lem, one only needs to consider genes that are differentially expressed between 
cancer samples and the matching controls. To get a sense of the amount of comput-
ing time that may be needed to exhaustively search through all  K -gene combina-
tions, consider the following typical scenario: the two gene-expression datasets with 
C 1  having 100 pairs of samples and C 2  consisting of 150 pairs of samples; and 500 
genes showing differential expressions (see Chap.   2    ) between the two sets of sam-

ples. In this case, one would need to examine  
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  combinations to fi nd a  K -gene 

combination that achieves the optimal classifi cation between the two datasets. For 
each  K -gene combination, a linear SVM is trained to optimally classify the two 
datasets as discussed above; if a trained SVM achieves a classifi cation accuracy bet-
ter than δ, retain the SVM as a candidate classifi er; then repeat this process until all 
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 K -gene combinations are exhausted. The fi nal classifi er is the one with the lowest 
misclassifi cation rate among all those retained. Our experience has been that  K  

should be no larger than 8; otherwise the number  
500
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  may be too large for a 

desktop workstation to handle. The following gives a detailed procedure of the 
search process:

  Cancer classifi cation algorithm 

   FOR   K  = 1  TO   N   DO 

    FOR  each  K -gene combination from the pool of differentially expressed genes 
 DO 

   a.     DO  the following  FOR  1,000 times

   1.    Randomly split C 1  and C 2  into C 1 -training and C 1 -testing, and C 2 - 
training and C 2 -testing, respectively, with C x -training and C x -testing 
having the same size, x ∈ {1, 2};   

  2.    Train a linear SVM based on the current  K -gene combination on C 1 - 
training and C 2 -training, which achieves optimal classifi cation between 
C 1 -testing and C 2 -testing;   

  3.     IF  the misclassifi cation rate of the trained SVM is < δ,  THEN  keep the 
SVM;    

     b.     IF  at least one SVM for the  K -gene combination has misclassifi cation 
rates < δ,  THEN  keep the  K -gene combination with the lowest misclassi-
fi cation rate a candidate for the fi nal classifi er.    

        IF  at least one fi nal classifi er candidate is found,  THEN OUTPUT  the one with the 
lowest misclassifi cation rate,  ELSE OUTPUT  no classifi er is found with at most 
 N  genes and misclassifi cation rate < δ.   

where  N  is the upper bound (set by the user) for searching a satisfying  K -gene dis-
criminator, and 1,000 is the number of times used to fi nd an optimal  K -gene classi-
fi er over different partitions of the given datasets C 1  and C 2 . 

 This simple procedure has been used to fi nd an optimal SVM-based classifi er 
between the two subtypes of gastric cancer based on gene-expression data collected 
on 80 pairs of gastric cancer and matching controls (Cui et al.  2011a ). Figure  3.1  
shows classifi cation accuracies by the best  K -gene classifi ers for  K  ≤ 8.

   If one needs to search for a  K -gene classifi er with larger  K ’s (>8) for some appli-
cation, a different search strategy may be needed to make it computationally feasi-
ble. One such strategy is called  recursive feature elimination , a procedure often 
used in conjunction with an SVM application; together they are referred to as  RFE- 
SVM  . While the detailed information of an RFE-SVM procedure can be found in 
(Guyon et al.  2002 ; Inza et al.  2004 ), the basic idea is to start with a list of all genes, 
each having some discerning power in distinguishing between the two classes of 
samples, and to train a classifi er, followed with the RFE procedure to repeatedly 
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remove genes from the initial gene list as long as the classifi cation accuracy is not 
affected until only  K  genes are left. 

 If desired, this idea for solving a 2-class classifi cation problem can be general-
ized to M-class problems, for M > 2, so multi-type cancers originating from the 
same tissue, such as the different types of leukemia, can be classifi ed based on 
identifi cation and application of  K -gene combinations as done above. One specifi c 
way to accomplish this is given as follow: a M-class classifi er can be constructed by 
separately calculating M binary classifi ers, each separating class  i  from the remain-
ing classes,  i =  1, …, M. Then, an input sample is classifi ed to class  J  if the sample 
has the highest classifi cation signifi cance by the  J   th   classifi er. Such a method is 
regarded as one- versus -all multi-class SVM (Cui et al.  2011a ). A detailed review on 
such classifi ers can be found in (Duan and Keerthi  2005 ). Using this type of classi-
fi cation method, one can build classifi ers for all the cancer types as long as they 
have gene-expression data available, along with labeled type information for each 
sample. 

 Numerous  K -gene combinations, also referred to as  K-gene panels , have been 
identifi ed and used as signatures for various cancer types. For example, a panel of 
104 genes has been identifi ed for distinguishing cancer tissues (of multiple types) 
from healthy tissues (Starmans et al.  2008 ), aimed to detect if a tissue is cancerous 
or not. Other signature panels include: (1) a 70-gene panel for predicting the poten-
tial for developing breast cancer, built by MammaPrint (Slodkowska and Ross 
 2009 ); (2) a 21-gene panel, termed  Oncotype DX , for a similar purpose; (3) a 
71-gene panel for identifi cation of cancers that are sensitive to  TRAIL -induced 
apoptosis (Chen et al.  2012 ); (4) a 31-gene panel used to predict the metastasis 
potential of a breast cancer, developed by CompanDX (Cho et al.  2012 ); and (5) a 
16-gene panel for testing for non-small-cell lung cancer against other lung cancer 

  Fig. 3.1    SVM-based classifi cation accuracy using the best  K -gene combination, for  K  = 1, 2, …, 
8, on 80 pairs of gastric cancer and control tissues       
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types (Shedden et al.  2008 ). Having a test kit for a specifi c cancer type, e.g., 
metastasis- prone or not, can enable surgeons to make a rapid and informed decision 
regarding the appropriate surgical procedure to adopt. Other test kits can assist 
oncologists in making an informed decision regarding the most appropriate treat-
ment plan for a particular cancer case. For example,  TRAIL  ( TNF -related apoptosis 
inducing ligand) is an anticancer-mediating protein that can induce apoptosis in 
cancer cells but not in normal cells. This makes  TRAIL  highly desirable; however, 
not all cancers are sensitive to  TRAIL . Hence, having a test using such a kit can 
quickly determine if a cancer patient should be treated with  TRAIL  or not. 

 In order to ensure the general applicability of any identifi ed signature genes, it is 
essential to carry out proper normalization of the to-be-used transcriptomic data that 
may be collected by different research labs, specifi cally to correct any systematic 
errors in the data caused by different sample-preparation and data-collection proto-
cols. Batch-based normalization such as the model presented in (Johnson et al. 
 2007 ) may prove to be effective in removing so created systematic errors due to 
using different data-collection protocols. 

 Although a number of computational methods have been developed for defi ning 
cancer types using gene-expression data (Ramaswamy et al.  2001 ; Tibshirani et al. 
 2002 ; Weigelt et al.  2010 ; Reis-Filho and Pusztai  2011 ), none of them have achieved 
100 % consistency with the typing results determined by cancer pathologists. There 
may be two key reasons for the less-than-perfect agreement. One is that some of the 
cancer typing decisions by pathologists may not necessarily be correct for various 
reasons: (a) a cancer identifi cation protocol may use only limited molecular level 
and somewhat subjective visual information; and (b) there is always the possibility 
of human errors in executing a type-calling procedure, particularly when visual 
appearances may be borderline between different options. Another possibility could 
be due to limitations of the current classifi cation techniques. For example, the above 
classifi cation methods may be too simple to capture the complex relationships 
among the expression data of multiple genes, which are unique to a specifi c cancer 
type. Moreover, it may be due to something more fundamental, such as the gene 
expression data not necessarily having all the information needed to classify cancer 
types correctly, e.g., some of the needed information may be at the protein or the 
post-translational level. It is expected that answers to this question may emerge as 
more cancer  omic  data become available and/or when more advanced analysis tech-
niques will be developed.  

3.2.2      Cancer Staging 

 Cancer stages have been defi ned mainly in terms of the tumor size, cell morphology 
and the state of metastasis. Currently its determination involves some level of sub-
jectivity by pathologists. Like cancer types, cancer stages can also be defi ned in 
terms of expression patterns of some subset of the human genes. A number of stud-
ies have been published on applications of computational techniques to predict the 
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stage of a cancer based on gene-expression data (Eddy et al.  2010 ; Goodison et al. 
 2010 ; Liong et al.  2012 ). For example, a 7-gene panel ( ANPEP, ABL1, PSCA, 
EFNA1, HSPB1, INMT, TRIP13 ) was used to measure the progression of prostate 
cancer and achieved high-80 % consistencies with pathologically-determined stages 
(Liong et al.  2012 ). Another example is a 4-gene panel ( IL1B ,  S100A8 ,  S100A9 , 
 EGFR ) for assessing the progression of muscle invasive bladder cancer (Kim et al. 
 2011 ). Similar gene panels have been developed for a few other cancers, such as 
breast cancer (Rodenhiser et al.  2011 ; Arranz et al.  2012 ), colon cancer (Erten et al. 
 2012 ) and oral cancer (Mroz and Rocco  2012 ). 

 Potentially, one can develop such gene-panels for any cancer as long as tran-
scriptomic data for cancer and control tissues, along with their stage information, 
are available. Here we use gastric cancer again as an example to illustrate how gene- 
expression data can be used to predict the developmental stage of a cancer. 

 The same set of gene-expression data collected on 80 pairs of gastric cancer 
and matching noncancerous gastric tissues used in Sect.  3.2.1  is again analyzed. 
Of the 80 cancer tissues, 4 were in stage I, 7 in stage II, 54 in stage III and 15 in 
stage IV. The detailed gene-expression data of these samples can be found in the 
Appendix. Note that these tissue samples are not evenly distributed across the 
four stages, but this may be a good representation of the actual stage distribution 
for gastric cancer patients presenting for resection, at least in China where the 80 
samples were collected. The present goal is to identify a set of differentially 
expressed genes between cancer and the matching controls, where the expression 
patterns adequately refl ect the stages of all the gastric  cancer samples. On this 
data set of 80 pairs of samples, 715 genes were found consistently to be differen-
tially expressed between the cancer and the matching controls (Cui et al.  2011a ). 

 A simplifi ed version of the staging problem is considered fi rst, by merging stages 
I and II samples into one “early stage” group and stages III and IV samples into the 
“advanced stage” group, making this a 2-stage classifi cation problem. From an 
analysis of all the differentially-expressed genes, four genes,  CHRM3  (cholinergic 
receptor),  PCDH7  (protocadherin),  SATB2  (special AT-rich sequence-binding pro-
tein) and  PPA1  (pyrophosphatase), were identifi ed, each giving a consistency level 
with the two combined stages better than 80 % by using a simple fold-change cut-
off. When using  K -gene combinations for  K  > 1, the classifi cation consistency (with 
pathologist-determined stages) continues to increase as  K  increases until it reaches 
95 %, and then the improvement becomes asymptotic. 

 Using the generalized classifi cation scheme outlined in Sect.  3.2.1 , one can 
undertake the 4-stage classifi cation problem. To ascertain if this problem is solv-
able, we have examined if there are genes whose (average) expression levels change 
monotonically with the progression of a cancer. Fortunately, numerous such genes 
are found, suggesting that the problem is solvable. Figure  3.2  shows three such 
genes, namely  LANCL3  (lanC lanti-biotic synthetase component c-like protein), 
 MFAP2  (microfi brillar-associated protein) and  PPA1  (pyrophosphatase).

   While the average levels of these three genes each change monotonically with 
cancer progression, they may not necessarily represent the best genes whose 
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 expression levels are most informative in predicting cancer stages for individual 
tissue samples. To fi nd out, an exhaustive search was made for the best  K -gene dis-
criminator, for 2 ≤  K  ≤ 10, for the 4-stage classifi cation problem. The combination 
( DPT, EIF1AX, FAM26D, IFITM2, LOC401498, OR2AE1, PRRG1, REEP3, 
RTKN2 ) was found to be the best 9-gene signature for gastric cancer staging, and 
( CPS1, DEFA5, DES, DMN, GFRA3, MUC17, OR9G1, REEP3, TMED6, TTN ) rep-
resents the best 10-gene marker, achieving 84.0 % and 90.0 % 4-stage classifi cation 
consistencies with the pathologists who did the original staging, respectively (Cui 
et al.  2011b ). 

 The following table lists the functions of these marker genes, which were 
retrieved from the GeneCards database (Rebhan et al.  1997 ), to give the reader a 
sense about what functional genes may serve as good markers for cancer staging. 
Interestingly, the two lists have very little in common with only one gene,  REEP3 , 
shared by the two lists plus a pair of homologous genes,  OR2AE1  and  OR9G1,  in 
the two lists as shown in the following table. Even by examining cellular level func-
tions, the two sets of pathways enriched with the two gene lists have very little in 
common. This suggests that there is probably a sizeable set of genes whose expres-
sion patterns are informative for the determination of cancer stages, and it just hap-
pens that these two lists give rise to the two best discriminators (Table  3.1 ).

   As in the case of cancer typing, the discrepancy between the pathologist-assigned 
stages and gene-expression-based staging could be due to various reasons as dis-
cussed in Sect.  3.2.1 . One useful effort will be to refi ne both defi nitions through 
collaboration between cancer pathologists and cancer data analysts. Such a joint 
effort to identify reasons for staging discrepancies by the two approaches should lead 
to a refi nement of the criteria used by both parties in an iterative fashion until there 
is convergence. Such an exercise could lead to improvement in cancer-staging based 
on gene-expression data in a systematic manner. Another important issue is that the 
current 4-stage classifi cation scheme for measuring cancer progression is probably 
somewhat arbitrary. There is no strong evidence to support the operational premise 

  Fig. 3.2    The average gene-expression levels of three genes represented by three panels from  left  to 
 right ,  LANCL3 ,  MFAP2  and  PPA1 , over all samples in each stage for stages S = 1, 2, 3 and 4. The y-axis 
is the average fold-change of gene-expression levels across all samples of a specifi c stage in cancer 
 versus  control samples, and the x-axis is the stage axis. The fi gure is adapted from Cui et al. ( 2011b )       
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that the development of a cancer has four distinct phases, but not three or fi ve or even 
a continuous progression without obvious phases and phase transitions, say, in terms 
of their probabilities to metastasize. To rigorously address this issue computation-
ally, it will require not only transcriptomic data of cancer  versus  control tissues, but 
also data regarding metastases. This is clearly an area where computational 
approaches could assist in making fundamental and highly meaningful advances.  

   Table 3.1    Functional annotation of the signature genes   

 Gene name  Function 

  DPT  (dermatopontin)  An extracellular matrix protein involved in cell-matrix 
interaction and matrix assembly 

  EIF1AX  (ukaryotic translation 
initiation factor 1α) 

 An essential translation initiation factor 

  FAM26D  (family with sequence 
similarity 26, member D) 

 A pore-forming subunit of a voltage gated ion channel 

  IFITM2  (interferon induced 
transmembrane protein 2) 

 An  IFN -induced protein that inhibits the entry of viruses 
to the host cell cytoplasm 

  LOC401498  (a hypothetical 
protein) 

 No function has been identifi ed 

  OR2AE1  (olfactory receptor 
2AE1) 

 A hormone receptor responsible for recognition 
and  G  protein-mediated transduction of odorant signals 

  PRRG1  (proline-rich gamma- 
carboxyglutamic acid protein 1) 

 The protein containing two functional motifs generally 
found in signaling and cytoskeletal proteins 

  REEP3  (receptor accessory 
protein 3): 

 May enhance the cell-surface expression of odorant 
receptors 

  RTKN2  (rhotekin 2)  May have an important role in lymphopoiesis 
  CPS1  (carbamoyl-phosphate 
synthase): 

 Important in removing excess ammonia from the cell 
through the urea cycle 

  DEFA5  (defensin α5)  Has antimicrobial activity and kills microbes by 
permeabilizing their plasma membrane 

  DES  (intermediate fi lament 
protein) 

 Forms a fi brous network connecting myofi brils to each 
other and to the plasma membrane 

  DMN  (dystrophin)  A cohesive protein linking actin fi laments to another 
support protein that resides on the inside surface of each 
muscle fi ber’s plasma membrane 

  GFRA3  (glial cell-derived 
neurotrophic factor family 
receptor) 

 Mediates the artemin-induced autophosphorylation 
and activation of the RET (rearranged during transfection) 
receptor tyrosine kinase 

  MUC17  (cell surface associated 
mucin 17) 

 Active in maintaining homeostasis on mucosal surfaces 

  OR9G1  (olfactory receptor, 
family 9) 

 May serve as a hormone receptor like  OR2AE1  in the above 

  TMED6  (transmembrane emp24 
protein transport domain) 

 A  HNF1α  (hepatic nuclear factor 1α) regulated transporter 

  TTN  (connectin)  Contributes to the balance of forces between the two halves 
of the sarcomere by providing connections at the level 
of individual microfi laments 
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3.2.3     Cancer Grading 

 Cancer grading is a less developed area compared to cancer typing and staging. 
Only a handful of grading systems have been proposed for some cancer types since 
Bloom and Richardson developed the fi rst grading system for breast cancer in 1957 
(Bloom and Richardson  1957 ). Similar classifi cations include the Gleason system 
for prostate cancer (Gleason  1966 ; Gleason and Mellinger  1974 ), the Fuhrman 
method for kidney cancer (Fuhrman et al.  1982 ) and the approach proposed by 
Goseki et al. for gastric cancer (Goseki et al.  1992 ). As of now, only a few grading 
systems have been developed based on molecular information, such as the 
Nottingham grading system for breast cancer (Simpson et al.  2000 ) and the work by 
Cui et al. for gastric cancer (Cui et al.  2011b ). The main challenge here is that, 
unlike cancer typing and staging, for which some molecular level information has 
already been used, cancer grading has been solely based on morphologic data of 
cancer cells and decided by cancer pathologists. Hence, there may be a large gap 
between pathologist-assigned grades and molecular-level commonalities among 
samples of the same grade. An example is given here to illustrate the possibility of 
using transcriptomic data to grade cancer tissues and point out possible issues with 
the existing grading procedures. 

 We continue to use the same gastric cancer dataset introduced in Sect.  3.2.1 . Out 
of the 80 gastric cancer tissues, 54 have grades assigned by cancer pathologists (Cui 
et al.  2011b ), so only these data are used for developing a computational method for 
grading a tumor based on its gene-expression data. Of the 54 tissues, 8 are well dif-
ferentiated (WD), 9 moderately differentiated (MD), 35 poorly differentiated (PD) 
and 2 undifferentiated (UD), with the patients’ data given in Table  3.2 . The aim here 
is to identify a set of genes whose expression patterns can well distinguish among 
the four grades of gastric cancer. 

 As in cancer staging, one can determine if some genes have expression levels 
that change monotonically with change in cancer grades from highly differentiated 
to undifferentiated. Using this criterion, 99 such genes were found. For each of 
these genes, its average fold-change among samples of each grade exhibits a mono-
tonic relationship with the grade list WD-MD-PD-UD from the least malignant to 
the most malignant, suggesting that the current grading scheme for gastric cancer 
does have some molecular basis. These genes include  POF1B  (premature ovarian 
failure 1β),  MET  (hepatocyte growth factor receptor),  CEACAM6  (carcinoembry-
onic antigen-related cell adhesion molecule),  ZNF367  (zinc fi nger protein involved 
in transcriptional activation of erythroid genes),  GKN1  (gastrokine-1 with strong 
anticancer activity),  LIPF  (gastric lipase with lipid binding and retinyl-palmitate 
esterase activity),  SLC5A5  (a glutamate transporter),  MUC13  (cell surface associ-
ated mucin),  CLDN1  (senescence-associated epithelial membrane protein),  MMP7  
(matrix metalloproteinase) and  ATP4A  (ATPase, H+/K + transporting,  α ). Figure  3.3  
shows four examples of these genes in terms of their averaged expression levels 
 versus  cancer grades across samples of each cancer grade.
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   Intuitively one may expect that some combinations of the 99 genes should give a 
good classifi cation among the four grades. However, this may not necessarily be the 
case for the same reason as discussed in Sect.  3.2.2 . Instead, a 19-gene combination 
is identifi ed, whose expression fold-changes gave a 79.2 % classifi cation consis-
tency with pathologist-assigned grades on two combined grades, namely “highly 
differentiated” covering the WD and MD samples and “poorly differentiated” for 
the PD and UD samples, using the algorithm of Sect.  3.2.1 . It takes a minimum of 
198 genes to give a 4-grade classifi cation at a comparable classifi cation consistency, 
specifi cally at 74.2 %. 

 There may be multiple reasons for the relatively low consistency levels between 
the pathologist-decided and gene-expression-based grading results, but one key rea-
son, we suspect, may be that the morphological information-based grade arrived at 
by pathologists may not be as informative in terms of their prognostic values as it 
could be, at least not on this dataset, indicating the possible limitations of the cur-
rent approaches and a need for improved techniques.   

3.3     Discovering (Sub)Types, (Sub)Stages and (Sub)Grades 
Through Data Clustering 

 The analysis presented in Sect.  3.2  is based on the assumption that the pathologist- 
assigned cancer types, stages and grades are generally correct, i.e., they refl ect, to a 
large extent, the true molecular level commonalities of cancer samples within each 
type (or stage, grade) and differences across cancer samples of different types (or 
stages, grades). A more general cancer typing (or staging, grading) problem is to 
identify cancer types (or stages, grades) when the information of human-designated 
types (stages and grades) is not available. The question addressed here is:  Can one 
possibly discover types or subtypes of a cancer based on the similarities among 
expression patterns of some (to-be-identifi ed) genes  among a subset of cancer and 
matching control samples. To put it in a more specifi c context: when given a collec-
tion of gene-expression data collected on leukemia samples consisting of four types 

  Fig. 3.3    The average gene-expression levels of four genes,  CEACAM6, MUC13, CLDN1  and 
 PGA4 , over gastric cancer samples of each grade for grades WD, MD, PD and UD. The defi nitions 
of the y- and x-axis are the same as in Fig.  3.2 . Adapted from Cui et al. ( 2011b )       
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of leukemia, namely ALL, AML, CLL and CML, but without any labels,  is it possible 
to rediscover the four types of leukemia from the given samples based solely on their 
gene-expression data ? The answer is: Yes, but it may take a lot of computing time. 

 From a computational perspective, this represents a different type of data analy-
sis problem from those discussed in Sect.  3.2 , which are called  classifi cation  prob-
lems. The main issue there was:  Given a set of objects, each labeled to belong to a 
specifi c class, can one identify “features” that can accurately predict the class label 
( e.g. , stages or types) of each object based on the features ? For the current problem, 
the question is:  For the same set of objects, can one partition all the objects into a 
few classes so that objects in each class share some common features that are not 
shared by objects in other classes ? Using computer science terminology, this is a 
 clustering  problem. 

 Clustering techniques have long been used in gene-expression data analyses 
(Ben-Dor et al.  1999 ; Wu et al.  2004 ; D’haeseleer  2005 ). Through identifi cation of 
sample groups sharing similar expression patterns of some genes, researchers have 
identifi ed various previously unknown subclasses of human diseases. The earliest 
work in cancer class discovery based on gene-expression data was published by 
Golub et al., which showed that without prior knowledge, the algorithm “discov-
ered” two subtypes of leukemia, namely, AML and ALL, based on the distinct gene- 
expression patterns among samples of the two subtypes (Golub et al.  1999 ). Other 
discoveries of cancer subtypes include: (1) the discovery of fi ve subtypes of breast 
cancers based on gene-expression patterns, namely, luminal A, luminal B, basal- 
like, normal-like and  ERBB2 + groups, which were found to have clinical implica-
tions (Livasy et al.  2006 ); (2) a recent study that classifi es colon cancer into six 
subtypes based on distinct genomic mutation patterns in the samples, namely sam-
ples with or without  BRAF ,  KRAS  and  P53  mutations, CpG island methylation pat-
terns, DNA mismatch repair status and the chromosomal instability level. The study 
also showed clinical relevance of the six subtypes (Marisa et al.  2013 ); and (3) a 
study that showed improvement in subtyping over the previously determined sub-
types of leukemia using gene-expression data (Yeoh et al.  2002 ). 

 These examples signify the importance that the to-be-discovered new subtypes 
must have clinical relevance. Otherwise such an analysis may lead to clustering 
results that group cancer samples according to their growth rates, which may share 
similar expression patterns of some genes but not any common driving or facilitat-
ing mechanisms in cancer development, hence limiting their usefulness from a 
clinical perspective. 

 Recent studies have revealed one key inadequacy in the current clustering tech-
niques in discovering subgroups having common or similar gene-expression pat-
terns, which are distinct from other subgroups. Specifi cally, a major issue is that the 
clustering techniques require a pre-defi ned subset of genes, based on which tissue 
samples are grouped according to the similarities in expression patterns of these 
genes. This, however, is too restrictive for discovering novel subgroups that may 
have similar expression patterns of some genes that cannot be determined in advance. 
The computational diffi culty in handling this more general clustering problem is 
that for a problem with  m  differentially expressed genes,  2   m   combinations of genes 
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need to be considered in order to identify a subset of the  m  genes sharing similar 
expression patterns among some samples. When  m  is relatively large, say even in the 
range of a few tens, this clustering problem becomes computationally intractable. 
A more powerful clustering strategy is needed to solve such problems, and  bi-
clustering  is one such technique (Van Mechelen et al.  2004 ). 

 To understand the basic principles of a bi-clustering algorithm, one can represent 
a gene-expression dataset as a numeric matrix with each row representing a gene, 
each column representing a paired (cancer  versus  control) sample, and each entry in 
the matrix having the log-ratio value between the expression levels of the corre-
sponding gene in the corresponding sample pair. Two genes are considered to have 
similar expression patterns for a subset of samples if the correlational coeffi cient 
between the two genes-corresponding rows across the samples-corresponding col-
umns is above some defi ned threshold. A  bi-clustering  problem is defi ned as that 
locating all (maximal) sub-matrices, in each of which the correlational coeffi cient 
between each pair of rows across the samples defi ned by the sub-matrix is above the 
specifi ed threshold. Each so defi ned sub-matrix is called a  bi-cluster . Clearly, a 
bi- clustering problem is substantially more general than the traditional clustering 
problem, in that it enables one to discover previously unknown subclasses of a can-
cer class (e.g., type, stage or grade). The generality of a bi-clustering problem also 
makes it considerably more diffi cult to solve computationally. 

 A number of algorithms have been proposed to solve this challenging problem 
(Madeira and Oliveira  2004 ; Van Mechelen et al.  2004 ). To assess the effectiveness 
of the bi-clustering approach in subgroup discovery, we have applied QUBIC 
(Li et al.  2009 ), a bi-clustering method we previously developed, to gene-expression 
data of three leukemia types, ALL, MLL and AML, mixed together with their type 
information removed. The algorithm can accurately recover the three subtypes of 
leukemia as shown in Fig.  3.4 , suggesting the general feasibility in discovering sub-
types from gene-expression data of multiple samples of the same cancer type.

   This technique has also been applied to the 80 pairs of gastric cancer expression 
data for the discovery of possible subgroups among the samples, which led to the 
identifi cation of 20-plus bi-clusters. Some of these bi-clusters represent previously 
uncharacterized subtypes of gastric cancer. For example, Fig.  3.5  shows one 
bi- cluster defi ned by 42 genes, for which the 80 samples fall into two groups, each 
sharing common expression patterns of the 42 genes but different between the two 
groups, specifi cally the light-gray subset on the left and the dark-gray subset on the 
right in the fi gure. Further analyses suggest that the two subgroups may belong to 
two known subtypes of gastric cancer, namely intestinal and diffuse subtypes (Shah 
et al.  2011 ). This conclusion is based on the observation that six of the 42 genes, 
namely  CNN1, MYH11, LMOD1, MAOB, HSPB8  and  FHL1 , have previously been 
reported to be differentially expressed between the intestinal and the diffuse sub-
types of gastric cancer, which all show similar expression patterns among samples 
in each subgroup in the fi gure.

   Such a bi-clustering analysis can also be used for discovery of cancer stages and 
grades. The approach is to fi rst identify genes whose expression patterns change 
with alterations in stage or grade and then conduct bi-clustering analyses using such 
genes as the gene set like the above analysis on cancer subtypes.  

3.3 Discovering (Sub)Types, (Sub)Stages and (Sub)Grades Through Data Clustering



  Fig. 3.5    A bi-clustering result based on 42 genes ( listed along the right side  of the fi gure) and 80 
paired samples ( columns ). The patterns suggest that the 80 patients fall into two subtypes, intesti-
nal and diffuse subtypes. Adapted from Cui et al. ( 2011a )       

  Fig. 3.4    An illustration of the identifi ed three subtypes of leukemia based on gene-expression data 
using the bi-clustering method QUBIC without using  a prior  knowledge about the three subtypes. 
The  rows  and  columns  represent genes and samples, respectively, and  dark gray  and  light gray  
represent up- and down- regulations, respectively       

 

 



81

3.4     Challenging Issues 

 The availability of genome-scale transcriptomic data for a variety of cancer  samples 
has enabled molecular information-based typing, staging and grading on more 
objective and scientifi c grounds. Along with this opportunity also comes a number 
of challenging technical issues in dealing with the complexity of the data and dis-
covering samples sharing distinct gene-expression patterns with statistical signifi -
cance. A few such challenges that must be addressed in order to make cancer 
typing, staging or grading analyses done in an informative and reliable manner are 
listed below. 

3.4.1     Identifi cation of Pathway-Level Versus Gene-Level 
Signatures 

 The basic premise for cancer typing (and similarly staging, grading) using classifi -
cation or clustering techniques is that some genes exhibit similar expression pat-
terns in cancer samples of the same type, which are not shared by cancers in other 
types. While this is probably true for some genes and cancers as shown in this 
chapter, there is no reason to believe that this has to be true universally. The reason 
is that cancers sharing certain phenotypic characteristics may tend to behave simi-
larly at the biochemical pathway level rather than at the individual gene level. For 
example, the repression of the apoptosis system could be accomplished through 
functional state changes in numerous different ways such as the inhibition of  P53  
transcription,  P53  gene mutations, over-expression of various survival pathways, 
the activation of anti-apoptotic members of the  BCL2  family, and over-expression of 
certain oncogenes. There are even multiple ways to repress apoptosis just through 
different ways of inhibiting the function of  P53 , such as repression of  P53 ’s expres-
sion transcriptionally or epigenomically, over-expression of its inhibitory binding 
partner  MDM2 , prevention of the  P53  protein from entering the nucleus or inhibi-
tion of  P53 ’s function through posttranslational modifi cation (see Chap.   7     for 
details). Hence, an improved strategy for gene-expression-based cancer typing 
needs to take this fact into consideration. An improved strategy may need to fi rst 
identify  equivalent  gene groups, each defi ned as genes whose expression changes 
may lead to the same effects at the pathway level. The challenge is how to identify 
such equivalent gene groups, which, we believe, requires novel ideas knowing that 
the current understanding of cancer-relevant pathways is far from complete.  

3.4 Challenging Issues
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3.4.2     Close Collaboration Between Data Analysts 
and Pathologists May Be Essential 

 Another challenge in using computational techniques for cancer typing (or staging, 
grading) lies in how to optimally integrate the experience of cancer pathologists in 
defi ning cancer types and the molecular information hidden in the  omic  data. 
A common practice, as shown above, has been to statistically link cancer samples, 
defi ned as the same type by pathologists, to a set of genes with common expression 
patterns, which are distinct from cancer samples of the other types. An issue encoun-
tered with such an approach is what to do next when the computational methods 
give rise to staging results different from those by pathologists, knowing that both 
approaches could have errors. An important message to convey here is that it is 
essential for cancer pathologists and  omic  data analysts to collaborate in order to 
resolve inconsistent results, and better yet to develop general protocols for mapping 
the knowledge of onco-pathologists to computer-based cancer typing, staging and 
grading procedures.  

3.4.3     Capturing Complex Relationships Among Gene- 
Expression Patterns 

 Another challenging issue is to identify complex relationships among gene expres-
sion data. For example, some cellular regulation may be triggered when the differ-
ence between the concentrations of certain gene products exceed a certain range, 
rather than their actual expression levels increasing above some threshold. Oxidative 
stress, defi ned as the difference between the abundance of oxidant molecules (such as 
ROS) and that of antioxidants (see Chap.   8     for details), serves as a good example 
here. Specifi cally it is the difference between the abundances of ROS molecules and 
the antioxidant species, rather than the abundance of one individual molecular  species 
like ROS, that triggers oxidative-stress responses when it is beyond some threshold. 
Basically more general models are needed for capturing the complex relationships 
among gene expression data than simply up-or-down expression levels. The problem 
here is to detect non-trivial mathematical relationships among some genes, which are 
shared by some subgroup of samples. Clearly this represents a substantially more 
complex problem in identifying genes similar expression patterns, which, if solvable, 
can help to solve substantially more complex clustering problems.   

3.5     Concluding Remarks 

 The state of the art in cancer typing, staging and grading relies heavily on morpho-
logical information of cancer cells, along with limited molecular level data. The 
limitation of such approaches is obvious since they are not connected with the 
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detailed molecular mechanism(s), raising an urgent need for improved cancer 
 characterization using  omic  data. The importance in moving in this direction is 
clear, as knowing that typing, staging and grading have important implications to 
prognosis as well as selection of the optimum treatment plan(s). Large scale  omic  
data, such as transcriptomic data, probably contain all or the majority of the infor-
mation about the underlying cancer in terms of its driving force, growth mechanism 
and ability to invade and metastasize. By linking such information to typing, staging 
and grading, one can potentially develop more effective ways to assess the level of 
development and malignancy of a cancer. To render  omic  data-based cancer typing, 
staging and grading prediction impactful, collaboration between cancer patholo-
gists and  omic  data analysts is the key. 

 There are two types of computational techniques that can assist in cancer typing, 
staging and grading. One relies on training datasets in which cancer samples are 
labeled with specifi c types, stages and grades by cancer pathologists; the problem is 
to extend this knowledge to enable computer programs to make the same calls by 
identifying genes whose expression patterns correlate well with the specifi ed types, 
stages or grades. This is an example of what is termed a classifi cation problem, or 
 supervised learning  as referred to in the fi eld of data mining. The other does not 
require a training dataset; instead the problem is to determine if a given group of 
cancer samples can be partitioned into subgroups so that each shares common 
expression patterns among some to-be-identifi ed genes, but distinct from other can-
cer samples. This approach is denoted as a clustering problem, or an  un-supervised 
learning  problem. Various challenging computational problems exist that await 
improved techniques, thus making computer-based decisions substantially more 
reliable than the state-of-the-art, including: (1) going beyond the simple similarity 
measures between gene expression to capture more complex relationships among 
gene-expression data of different cancer samples of the same type, stage or grade; 
and (2) more integrated approaches to cancer typing, staging and grading through a 
refi nement of the existing classifi cation schemes involving feedback from patholo-
gists and computational prediction.      

    Appendix 

    Table 3.2    Patient data used in the analysis in Sect.   3.2       

 Patient ID  Age  Gender  Histologic type  Grade  Stage  Smoking  Alcohol  Weight 

 1  54  F  WMD  G2  III  0  0  70 
 2  62  F  WMD  G1  IIIA  0  0  60 
 3  53  M  WMD  G2  IIIB  0  0  60 
 4  51  M  WMD  G2  IIIB  1  0  – 
 5  73  M  WMD  –  IB  0  0  63 
 6  41  M  WMD  G2  II  –  –  – 
 7  59  M  WMD  G1  III  1  1  51 
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 Patient ID  Age  Gender  Histologic type  Grade  Stage  Smoking  Alcohol  Weight 

 8  68  M  WMD  G2  IV  0  0  48 
 9  56  F  WMD  G1  IIIA  0  0  45 
 10  43  F  WMD  G1  III  0  0  55 
 11  71  F  WMD  G2  III  0  0  42 
 12  65  M  WMD  G2  IIIA  0  0  70 
 13  55  M  WMD  G2  III  0  0  69 
 14  55  M  WMD  G2  IIIB  0  0  74 
 15  62  F  WMD  G1  IV  –  –  – 
 16  41  F  SRC  –  IV  0  0  43 
 17  42  M  SRC  –  III  0  0  60 
 18  68  M  SRC  –  III  0  0  50 
 19  50  M  SRC  –  III  0  0  62 
 20  55  M  SRC  –  III  0  0  50 
 21  34  M  SRC  –  III  0  0  90 
 22  63  M  PD  G3  IIIB  1  1  – 
 23  56  M  PD  G3  IIIB  1  1  – 
 24  71  M  PD  G3  IIIB  1  0  – 
 25  55  F  PD  G3  IIIB  0  0  63 
 26  64  M  PD  G3  IIIB  0  0  55 
 27  53  F  PD  G3  IIIB  0  0  77 
 28  56  M  PD  G3  IIIB  1  0  55 
 29  53  M  PD  G2–

G3 
 III  0  0  62 

 30  71  M  PD  G3  III  0  0  60 
 31  58  M  PD  G2–

G3 
 III  0  0  50 

 32  42  M  PD  G3  IB  0  0  52 
 33  65  F  PD  G3  IIIA  0  0  – 
 34  50  M  PD  G3  III  1  0  47 
 35  59  M  PD  G3  III  0  0  57 
 36  75  M  PD  G3  III  0  0  65 
 37  40  M  PD  G3  III  0  1  80 
 38  51  F  PD  G3  III  1  0  52 
 39  67  F  PD  G3  IV  0  0  48 
 40  65  F  PD  G3  IIIA  0  0  53 
 41  53  F  PD  G3  IIIA  1  0  60 
 42  60  F  PD  G3  IIIB  0  0  60 
 43  70  M  PD  G3  II  1  0  59 
 44  56  F  PD  G3  II  0  0  74 
 45  78  F  PD  G3  IIIB  0  0  39 
 46  65  M  PD  G3  III  0  1  70 
 47  68  M  PD  G3  III  1  1  69 

Table 3.2 (continued)
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 Patient ID  Age  Gender  Histologic type  Grade  Stage  Smoking  Alcohol  Weight 

 48  57  F  PD  G3  IIIA  0  0  61 
 49  68  F  PD  G3  III  –  –  – 
 50  61  M  PD  G2–

G3 
 III  1  0  70 

 51  55  M  PD  G3  III  –  –  – 
 52  67  F  PD  G3  II  –  –  – 
 53  50  F  PD  G3  III  –  –  – 
 54  62  F  MC  –  III  0  0  70 
 55  55  M  MC  –  IIIB  0  0  60 
 56  57  M  MC  G2  IIIA  –  65 
 57  74  M  MC  –  IB  0  0  62 
 58  58  M  MC  G3  IV  0  0  66 
 59  76  M  MC  –  II  0  0  70 
 60  54  M  MC  –  III  1  1  49 
 61  47  M  (tublar)  –  IB  1  1  65 
 62  49  M  (tubular/

papillary) 
 –  III  1  1  60 

 63  76  F  (undifferentiated)  G4  II  0  0  – 
 64  51  M  (undifferentiated)  G4  II  –  NA  70 
 65  69  F  (squamous cell)  –  III  0  0  50 
 66  65  M  (squamous cell)  G3  III  0  1  50 
 67  36  M  (ulcerative)  G3  IIIA  1  0  60 
 68  75  F  (ulcerative)  G2–

G3 
 IV  –  40 

 69  69  M  (mucous cell 
type) 

 G3–
G4 

 III  0  0  55 

 70  81  M  (adenosquamous)  –  III  1  0  56 
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