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    Chapter 2   
  Omic  Data, Information Derivable 
and Computational Needs 

                    Cancer is probably the most complex class of human diseases. Its complexity lies 
in: (1) its rapidly evolving population of cells that drift away from their normal 
functional states at the molecular, epigenomic and genomic levels, (2) its growth 
and expansion to encroach and replace normal tissue cells; and (3) its abilities to 
resist both endogenous and exogenous measures for stopping or slowing down its 
growth. According to Hanahan and Weinberg, cancer cells, regardless of the type, 
tend to have eight hallmark characteristics (Hanahan and Weinberg  2011 ). As intro-
duced in Chap.   1    , these hallmarks are: (1) reprogrammed energy metabolism, (2) 
sustained cell-growth signaling, (3) evading growth suppressors, (4) resisting cell 
death, (5) enabling replicative immortality, (6) inducing angiogenesis, (7) avoiding 
immune destruction, and (8) activating cell invasion and metastasis. Other authors 
have suggested some additional hallmarks of cancer such as tumor-promoting 
infl ammation (Colotta et al.  2009 ) and deregulated extracellular matrix dynamics 
(Lu et al.  2012 ). These recognized hallmarks have provided an effective framework 
for addressing cancer-related questions, having led to a deeper understanding of 
this disease. However, the reality is that our overall ability in curing cancer has not 
yet made substantive improvements, particularly in adult cancers that account for 
99 % of all cancers since the start of the “War on Cancer” in 1971 (The-National-
Cancer- Act  1971 ). 

 Major challenging issues that clinical oncologists have to deal with include not 
only considerable heterogeneity and different genetic backgrounds even within the 
same type of cancer, but also that effective medicines tend to lose their effi cacious-
ness within a year, or often within a few months. A natural question to pose is: 
 What are the reasons for this loss of effectiveness ? Intuitively this is due to a can-
cer’s ability to evolve rapidly, particularly in terms of generating drug-resistant 
sub- populations, which is facilitated by its abilities to proliferate and to accumu-
late genomic mutations rapidly. However, such an answer, plausible as it may be, 
has possibly missed the real root issue:  Why do these cells divide so rapidly in the 
fi rst place ? 
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 The  Red Queen Hypothesis , proposed by Leigh Van Valen in 1973, may provide 
a good framework for studying this and other cancer-related fundamental issues 
from an evolutionary perspective. The hypothesis states:  an adaptation in a popula-
tion of one species may change the selection pressure on a population of another 
species, giving rise to an antagonistic coevolution  (Valen  1973 ). When in this frame 
of thinking, one may be inspired to ask:  What specifi c selection pressures must the 
evolving neoplastic cells overcome, pressures that may drive their rapid prolifera-
tion ? Currently we do not have an answer to this question yet. Among the many 
reasons that our knowledge is so sparse has been the lack of molecular-level data, 
full analyses and mining of which can potentially reveal the full complexity of an 
evolving cancer. While large quantities of  omic  data such as gen omic , epigen omic , 
transcript omic , metabol omic  and prote omic  data have been generated for a variety 
of cancer types, only a few cancer studies have been designed to take full advantage 
of all the information derivable from the available  omic  data (Cancer-Genome- 
Atlas-Research  2008 ,  2011 ,  2012a ,  b ,  c ,  2013a ,  b ; Kandoth et al.  2013 ). Integrative 
analyses of multiple data types may prove to be essential to gain a full and 
 systems- level understanding about a cancer’s evolution dynamics, including the 
elucidation of its true drivers as well as key facilitators at different developmental 
stages of a cancer. We anticipate that only when all of the key information hidden in 
 omic  data can be fully derived and utilized can we expect a meaningful breakthrough 
in our understanding of cancer. 

2.1      Genomic Sequence Data 

 The Human Genome Project was initiated in 1986 by the US Department of Energy 
and the National Institutes of Health, which ultimately led to the generation of the 
fi rst digital copies of two complete human genomes in 2001 (Lander et al.  2001 ; 
Venter et al.  2001 ), one by government agencies and one by a private organization. 
For the fi rst time in history, the three billion base pairs (bps) of nucleotides compris-
ing a complete human genome are represented in a digital form, directly readable by 
humans and computers, allowing researchers and clinicians to view and analyze the 
detailed genetic makeup of two healthy humans. This singular achievement has pro-
foundly changed biological and medical sciences, clearly representing the most sig-
nifi cant discovery since the fi nding of the double-strand helical structure of DNA in 
1950s. Complementing and extending the invaluable genome sequence data, the 
major change that the Human Genome Project has brought about is that genetic sci-
ence is now equipped with two powerful tools: rapid genome-sequence generation 
and computation-based information discovery from the genomic sequences. These 
tools along with the advances they have helped to make in the biological sciences, 
have fundamentally transformed the science of genetics, which is now data-rich and 
quantitative. This transition has attracted and continues to attract many mathemati-
cal and computational scientists to study problems related to genomes and other bio-
molecules represented in digital forms. The progress made has further transformed 
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the general biological sciences and has substantially advanced our overall ability to 
study more complex biological problems than could be done before the  omic  era. 

 With the public availability of digitally represented human genomes in hand, 
scientists have computationally identifi ed the vast majority of the ~20,000 protein- 
encoding genes in our genome, along with large numbers of single-nucleotide poly-
morphisms (SNPs) and other types of genetic variations across individuals and 
different ethnic groups as well as various disease groups. Targeted sequencing of 
specifi c genomic regions deemed to be relevant to certain diseases has led to the 
identifi cation of numerous genetic markers for multiple diseases. For example, 
Down syndrome is now understood to be caused by an extra copy of chromosome 21. 
A few additional examples include: (1) adrenoleukodystrophy, a progressive degen-
erative myelin disorder caused by mutations in the  ABCD1  (ATP-binding cascade 
subfamily D) gene, which was made popular because of the movie “Lorenzo’s Oil” 
in the early 1990s; (2) a class of hereditary breast cancers caused by mutations in 
the  BRCA  (breast cancer) genes; (3) familial hyperlipidemia attributable to  mutations 
in the  APC  (adenomatous polyposis coli) gene; and (4) frontotemporal dementia, a 
form of inherited dementia, caused by mutations related to the splicing of exon 10 
of the  Tau  gene (D’Souza et al.  1999 ). All these were detected through genome- 
scale or targeted gene sequencing and associated sequence analyses. 

 In addition to the Human Genome Project, a number of closely related genome 
sequencing projects have been established to provide a more comprehensive dataset 
for the human genome(s): (1) the Human Genome Diversity Project to document 
genomic differences across different ethnic groups (Cavalli-Sforza  2005 ); (2) the 
Human Variome Project to establish relationships between human genomic varia-
tions and diseases (Cotton et al.  2008 ); (3) the International HapMap Project to 
develop a haplotype map of the human genome (International-HapMap  2003 ); (4) 
the 1000 Genome Project to establish a detailed catalog of all human genetic varia-
tions (Service  2006 ); and (5) the Personal Genome Project to sequence the complete 
genomes and establish the matching medical records of 100,000 individuals (Church 
 2005 ). All these sequencing projects, along with other related ones, such as the 
Neanderthal Genome Project (Green et al.  2010 ) and the Chimpanzee Genome 
Project (Cheng et al.  2005 ; Green et al.  2010 ), could provide a comprehensive view 
of the genomes of healthy humans with normal polymorphisms as well as mutations 
associated with various diseases. 

 The Cancer Genome Atlas (TCGA) represents probably the most ambitious 
cancer- genome sequencing project, which aims to sequence up to 10,000 cancer 
genomes covering 25 major cancer types by 2014 and make the data publicly avail-
able (Cancer-Genome-Atlas-Research et al.  2013 ). Such data will provide a sub-
stantial amount of information about cancer-related genomic mutations. By 
comparing the genome sequences of a cancer and the matching normal tissue, one 
can identify all the genomic changes in the cancer genome, which generally fall into 
two categories: simple and complex mutations. Specifi cally,  simple  mutations refer 
to single base-pair mutations and DNA single or double-strand breaks; and  complex  
mutations refer to duplications and deletions (together referred to as  copy-number 
changes ), translocations and inversions of genomic segments. Simple mutations can 
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result from exogenous factors such as radiation, air-borne and food-related 
 carcinogens in the environment, as well as from endogenous factors in the microen-
vironments inside our bodies, including ROS (reactive oxygen species) and other 
reactive metabolites plus random mutations. For example, ionizing radiation, 
including X-rays and gamma rays, can directly cause point mutations and DNA 
breaks. In addition, a variety of non-radioactive carcinogens have been identifi ed 
that can damage DNA, including microbes, chemical compounds in the environ-
ment and reactive species inside our cells, as detailed in Chap.   5    . Free radicals rep-
resent a large class of internal, potentially carcinogenic agents that are highly 
reactive molecules and can participate in undesired reactions, causing damages to 
cells and specifi cally to DNA. Infi delity of transcription and/or repair can also lead 
to simple mutations. While these carcinogens can produce simple DNA damages, it 
is the faulty or imprecise DNA replication and repair machineries that lead to the 
complex mutations, namely undesired duplications, deletions, inversions and trans-
locations of large DNA segments. 

 There are multiple situations that can result in such complex genomic mutations. 
For example, under persistent hypoxic conditions, cells tend to use emergency 
mechanisms to repair simple mutations, but the inaccuracy of such mechanisms can 
lead to complex mutations as defi ned above (Scanlon and Glazer  2013 ). Here we 
outline one such mechanism, named  microhomology-mediated end joining  (MMEJ) 
for repairing double-strand DNA breaks, through which undesired DNA copy- 
number changes, inversions and translocations can result (Truong et al.  2013 ). Like 
the regular repair mechanism for double-strand breaks, MMEJ uses the sister chro-
mosome as the template to replace the region with a break. The difference is that it 
uses a much shorter homologous region in the sister chromosome, typically 5–25 bps 
rather than the usual 200 bps required by the normal DNA repair mechanism, hence 
the designation microhomology-mediated. While the advantage is that this mecha-
nism is substantially faster than the regular DNA repair machinery, which is needed 
under certain emergency conditions, it is error prone due to the less stringent 
requirement for fi nding the equivalent region in the sister chromosome, thus leading 
to various complex mutations (Bentley et al.  2004 ). This mechanism is used only 
under highly stressful conditions when the regular DNA repair mechanisms are 
functionally repressed (Bindra et al.  2007 ), and hence is often used in cancer- 
associated environments. 

 Knowing how different genomic mutations occur, one could possibly develop 
computational models to infer the evolutionary history of the mutations observed in 
a cancer genome from the matching reference genome. The idea is that one can fi rst 
identify all the genomic differences between a cancer genome and the matching 
reference genome. For each identifi ed complex mutation, one can apply a mechanis-
tic model like the one outlined above (or from the literature) to predict how it occurs 
from the previous generation of the genome, while simple mutations can be assumed 
to take place randomly according to some stochastic models. It is worth noting that 
some of the evolutionary intermediates (mutations) may or may not be present in the 
cancer genome, due to the possibilities that some portions of the genome might have 
been deleted during evolution. In addition, it should be emphasized that such an 
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approach (even when taking into consideration the other emergency DNA repair 
mechanisms) may not necessarily yield a unique evolutionary path from the refer-
ence to the cancer genome. One possible way to constrain this phylogenetic recon-
struction problem to a solution space as small as possible is to fi nd such a path under 
the parsimony assumption (Steel and Penny  2000 ), as often used in phylogenetic 
reconstruction algorithms. Specifi cally one can require that the predicted evolution-
ary path have either the smallest number of generations or the highest consistency 
with the occurrence probabilities of different types of mutations as documented in 
the literature. As of now, no such algorithms have been published for making evolu-
tionary path predictions, but the need for such tools is clearly there in order to 
understand the evolution of a cancer genome. 

 Various other types of information may also be derivable from cancer genomes, 
such as: (1) oncogenes and tumor suppressor genes (see Chap.   1     for defi nition) that 
may be specifi c to a particular cancer type. Examples include gene fusions as in the 
case of the Philadelphia chromosome for chronic myelogenous leukemia (CML) 
(Nowell and Hungerford  1960 ); (2) potential integration of microbial genes into the 
cancer genomes as in the case of hepatitis B virus genes integrated into the host 
genome; (3) biological pathways that are enriched with genetic mutations in a par-
ticular cancer, leading to the loss of function at the pathway level; and (4) changes 
in mutation patterns as a cancer advances. 

 By systematically identifying mutations in the genomes of multiple patients of 
the same cancer type, one can identify biological pathways enriched with such 
mutations, using analysis tools like DAVID (Huang et al.  2009 ) against pathway 
databases such as KEGG (Kanehisa et al.  2010 ,  2012 ,  2014 ), BIOCARTA 
(Nishimura  2001 ) or cancer-related gene sets (Forbes et al.  2011 ; Chen et al.  2013 ; 
Zhao et al.  2013 ). For example, a study, published in 2007 on genomic mutations 
observed across 210 cancer types, discovered that the pathway having the highest 
enrichment with non-synonymous mutations is the  FGF  (fi broblast growth factor) 
signaling pathway, revealing one commonality among changes needed by cancer 
evolution across different cancer types (Greenman et al.  2007 ). With such informa-
tion, one can further infer which cellular processes need to be terminated or become 
hyperactive in any specifi c order as a cancer evolves, hence possibly developing 
new insights about the evolutionary paths unique to particular cancer types or com-
mon among all cancer types.  

2.2      Epigenomic Data 

 Epigenomic data provide information about all the chemical modifi cations on the 
genomic DNA and associated histone proteins in a cell, namely  DNA methylation  
and  histone modifi cation , among a few other less studied epigenomic activity types. 
While epigenetic analyses are not new, it is the high-throughput array and sequenc-
ing techniques that have made such analyses at a genome scale possible and have 
clearly advanced our overall capabilities to study cancer. 

2.2  Epigenomic Data
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 DNA methylation is a process by which a methyl group is added to the carbon 5 
position of cytosine residues (C) in CpG dinucleotides. This is accomplished 
through a group of enzymes known as  DNA methyl-transferases , the reactions of 
which can be reversed by another group of enzymes termed  DNA demethylases . 
When a CpG region is highly methylated, they attract a group of enzymes called 
histone deacetylases that will initiate chromatin remodeling to change the local 
structure of the DNA, hence changing its accessibility to large molecular structures 
such as the transcription machinery, RNA polymerase. Since long CpG regions 
(denoted as  CpG islands ) tend to be associated with the promoters of genes, meth-
ylation of such regions represses the expression of the genes. 

 Histones are proteins that bind with DNA to form the basic folding units, denoted 
as  nucleosomes , of chromatin, as introduced in Chap.   1    . The packing density of 
chromatin is closely related to the transcriptional state of a gene, i.e., lower packing 
density implying higher transcriptional activity. Cells change their chromatin struc-
tures through post-translational modifi cations on the relevant histones, including 
acetylation, deamination, methylation, phosphorylation, SUMOylation and ubiqui-
tination. The understanding is that interactions between histones and DNA are 
formed by electrostatic attraction between the positive charges on the histone sur-
face and the negative charges on DNA. Consequently, modifi cations on histones 
may change the charges of the surface residues, possibly changing the conformation 
and the transcriptional accessibility of a folded DNA and ultimately enhancing or 
repressing expression of the relevant genes (Strahl and Allis  2000 ; Kamakaka and 
Biggins  2005 ). Another mechanism is through recruiting and applying chromatin 
remodeling  ATPases , where histone modifi cations can lead to disruptions of  ATPase  
attraction to the chromatin, hence altering the DNA’s physical accessibility to the 
RNA polymerase (Vignali et al.  2000 ). 

 Various techniques have been developed to reliably capture DNA methylations 
and histone modifi cations at a genome scale. Among the assays that have been used 
for detecting methylations is the  bisulfi te  sequencing technique (Yang et al.  2004 ). 
By converting each methylated C to a T and removing the methylation, the bisulfi te 
method utilizes the current sequencing techniques to produce the modifi ed sequence 
and then recovers the methylation locations through comparisons between the 
sequenced Ts and Cs at the same locations in the original DNA and the modifi ed 
DNA done as above. 

 Histone modifi cation sites can be detected using the ChIP-chip array technique 
(Huebert et al.  2006 ), which has previously been used to identify the binding sites 
of transcriptional factors. The difference here is to detect the DNA binding sites 
with histones relevant to the packing of DNA. Comparisons between the identifi ed 
DNA binding sites under different conditions can lead to the identifi cation of modi-
fi ed chromatin structures. The advancement of sequencing techniques in the past 
few years has led to the development of the second generation ChIP technique, 
namely  ChIP-seq , which can provide more quantitative and reliable data about his-
tone modifi cation sites. 

 From either of the two types of epigenomic data, one can infer genes that are 
primed to be repressed or enhanced transcriptionally at the epigenomic level. 
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These data, in conjunction with other  omic  data such as transcriptomic and genomic 
 information, can be used to derive association relationships between epigenomic 
activities and the cellular as well as micro-environmental states. This can lead to 
identifi cation of possible triggers and regulatory pathways of different epigenomic 
activities. Information of this type is clearly needed since, although numerous 
epigenomic effectors such the enzymes for DNA methylation and histone modifi -
cations have been identifi ed, very little is known about the regulation of these 
effectors and under what conditions a specifi c set of genes will be methylated. As 
discussed in Chap.   9    , epigenomic level changes can be considered as an intermedi-
ate step between (reversible) functional state changes of effector molecules and 
(permanent) genomic mutations. A detailed discussion regarding the possible rela-
tionships among these three types of changes needed by evolving cancer cells is 
given in Chap.   9    . 

 A number of large-scale epigenomic sequencing projects have been initiated 
with similar ambitious goals to those of the genome sequencing projects outlined in 
Sect.  2.1 . These projects include: (a) the NIH Roadmap Epigenomics Program, 
which started in 2008 with the aim of producing histone modifi cation data for over 
30 types of modifi cations in a variety of human cell types; (b) a component of the 
ENCODE (Encyclopedia of DNA Elements) project launched by the US National 
Human Genome Research Institute aiming as part of its goal the characterization of 
the epigenomic profi les of 50 different tissue types; (c) the International Human 
Epigenome Consortium having its goal to build on and expand the NIH Epigenomics 
Program to include nonhuman cells and tissues, and to make it a functional interna-
tional program; and (d) some regional epigenomics projects such as the “Epigenetics, 
Environment and Health” project in Canada and the Australian Alliance for 
Epigenetics. A number of human epigenomic databases have been developed as the 
result of these and related projects (see Chap.   13     for details).  

2.3     Transcriptomic Data 

 The advent of microarray technology in the mid-1990s has made it possible to mea-
sure in real time the expression levels of all the genes encoded in the human genome 
under defi ned cellular conditions. This methodology also applies to other genomes 
as long as their protein-encoding genes are known. This is one of the high- throughput 
techniques that has clearly fueled the revolution in biological sciences that we have 
been witnessing since the start of the Human Genome Project. 

 Comparative analyses of gene-expression data of cells collected under different 
controlled conditions or on disease  versus  control tissues can provide a large amount 
of information useful for studying human diseases at the molecular and the cellular 
levels. For example, by comparing gene-expression levels in a lung cancer tissue 
with those in the adjacent healthy tissue of the same patient, one can identify dif-
ferentially expressed genes in the lung cancer  versus  the healthy lung. While not 
necessarily all the differentially expressed genes are directly relevant to cancer, this 
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information provides a basis for further inference of genes that may be directly 
relevant to cancer. For example, one can compare such sets of differentially 
expressed genes across multiple patients of the same cancer type to eliminate those 
genes whose differential expressions are specifi c to a few individuals or cancers at 
a specifi c developmental stage. That is, one can identify genes that may be most 
essential to the development of a cancer type through the identifi cation of genes that 
are commonly differentially expressed across all or the majority of the patients of 
the cancer type examined. 

 When applied in conjunction with pathway-enrichment analysis, particularly 
against the eight cancer-hallmark related pathways mentioned earlier, one can iden-
tify hallmark pathways enriched with up-regulated (or down-regulated) genes in a 
specifi c type of cancer. If the cancer data also have the stage information, one can 
further derive information about how each of the cancer hallmarks is executed at the 
molecular and cellular levels for this cancer type and in what order. By comparing 
such information across multiple cancer types, one can possibly detect which 
 relative orders among the observed hallmark events are essential and which are 
coincidental. And by comparing such data between two subgroups of patients of the 
same cancer type, for example one with smoking histories and the other without, 
one can possibly derive how smoking may have contributed to the development of 
individual hallmark events. Similar analyses can be used to discover possible con-
tributions by other lifestyle habits. 

 Actually, much more information can be derived through analyses of cancer tran-
scriptomic data. For example, tiling array is a variation of the gene-expression tech-
nique used to detect DNA-binding sites of specifi c proteins through ChIP-chip 
experiments, hence making it possible to identify transcription regulators of specifi c 
genes under particular conditions (Ren et al.  2000 ; Iyer et al.  2001 ). RNA-seq is the 
new generation of techniques for transcriptomic data collection (Wang et al.  2009 ). 
It refers to the use of high-throughput technologies to sequence cDNAs that are 
reversely transcribed from the expressed RNA molecules. By doing deep sequenc-
ing, the dynamic range of RNA-seq can span fi ve orders of magnitude, substantially 
larger than those of microarray-based techniques. This allows more accurate identi-
fi cation of differentially expressed genes, particularly those that tend to express at a 
relatively low or high level and where changes tend to be relatively small but statis-
tically signifi cant, such as those often observed with transcription factors. In addi-
tion, RNA-seq techniques are digital in nature, in comparison with the analog 
signals provided by microarrays. One advantage of digital signals is that the result-
ing measurements are more repeatable compared to analog signals and less prone to 
be affected by the experimental environments. The biggest advantage of RNA-seq 
data over microarray data is that it contains all the information about alternatively 
spliced variants since they do not rely on short sequence probes as in microarrays, 
instead producing the entire sequence for each transcript. Such information allows 
one to derive all splicing variants in specifi c cancers and cancer stages, thus enabling 
more detailed functional mechanism studies. 

 A few computer programs have been developed and made publicly available for 
inference of splicing variants based on RNA-seq data, such as Cuffl inks, which 
requires a reliable reference genome for its inference of splicing isoforms (Trapnell 
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et al.  2010 ). Another popular transcript-assembly program, Trinity, is a  de novo  
method, i.e., no reference genome is required (Grabherr et al.  2011 ), but at the 
expense of less reliable assembly results compared to Cuffl inks. The limitation of 
Cuffl inks and similar programs is that they may not necessarily work well on cancer 
RNA-seq data when the underlying cancer genome is not available, which could be 
substantially different from the matching genome of healthy cells since cancer 
genomes tend to have large numbers of genomic reorganizations such as transloca-
tions, copy-number changes and inversions, as well as breaks as discussed in 
Sect.  2.2 . Thus, more effective computational techniques are clearly needed for 
inference of splicing isoforms from cancer RNA-seq data. 

 Presently, a number of databases for microarray and RNA-seq gene-expression 
data have been developed and are publicly available. For example, GEO is a general- 
purpose gene-expression database consisting of both cancer and other tissue types 
(Edgar et al.  2002 ). A cancer-centric genome database that also contains epigenomic 
and transcriptomic data for numerous cancer types is TCGA (Cancer-Genome- 
Atlas-Research et al.  2013 ). Gene Expression for Pediatric Cancer Genome Project 
is a gene-expression database developed specifi cally for pediatric cancers (Downing 
et al.  2012 ). Overall these databases have genome-scale transcriptomic data for over 
200 different types of cancer tissues and a substantially larger number of cancer cell 
lines. A tremendous amount of information could potentially be derived through 
comparative analyses of these data across different cancer types and cancers at vary-
ing stages or of distinct malignancy grades (see Chap.   3    ). For example, by simply 
plotting the average number of differentially expressed genes across cancer samples 
 versus  the 5-year survival rate for each of the following nine cancer types: mela-
noma, pancreatic, lung, stomach, colon, kidney, breast, prostate cancers and basal 
cell carcinoma, one can see that there is a close relationship between these two 
numbers (see Fig.  2.1 ).

  Fig. 2.1    The 5-year (y-axis) survival rate for each cancer type  versus  the average number of dif-
ferentially expressed genes per cancer sample (x-axis) (adapted from (Xu et al.  2012 ))       
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   By examining the average up- or down-regulation levels of genes in selected 
pathways of different cancer types, it is possible to derive information about acti-
vated energy metabolism in different cancer types, which vary from glucose- to 
lipid- to amino acid-based. As an example, Fig.  2.2  shows the activity levels of 
multiple energy producing metabolic pathways, covering glycolysis, the TCA cycle, 
oxidative phosphorylation and fatty acid metabolism in nine cancer types. One can 
see from the fi gure that pancreatic cancer has the highest up-regulation in glucose 
metabolism, followed by kidney and lung with breast cancer having the least 
changes in glucose metabolism when compared with their matching control tissues. 
One can also see that, while most of the seven cancer types on the left show down- 
regulation or no changes in oxidative phosphorylation, both skin cancer types, 
namely melanoma and basal cell carcinoma, show up-regulation in this pathway. 
[ N.B.   Throughout this book, all the analyses of transcriptomic data across different 
patients samples are properly normalized, hence comparisons among fold-changes 
of genes across different samples are meaningful  . ]

   A variety of computational techniques have been developed for information deri-
vation from gene-expression data, including: (1) identifi cation of differentially 
expressed genes using simple statistical tests such as T-test or Fisher’s exact test, (2) 
clustering analysis, (3) bi-clustering analysis and (4) pathway enrichment analysis 
for differentially expressed genes. The following discussion provides some basic 
ideas about these analysis techniques, followed with a list of novel techniques for 
more advanced analysis needs. 

2.3.1     Data Clustering 

 Identifi cation of co-expressed genes is a basic technique for gene-expression analy-
sis, which has a wide range of applications in cancer studies. The idea is to identify 
all genes whose expression patterns exhibit statistical correlations over a time 
course (typically for cell line-based data) or among a collection of samples; such 
genes are called  co-expressed genes . There are numerous online tools for identifi ca-
tion of co-expressed genes such as DAVID, CoExpress (Nazarov et al.  2010 ) and 
GeneXPress (Segal et al.  2004 ). Co-expressed genes may suggest that the genes are 
transcriptionally co-regulated even though some co-expressed genes appear coinci-
dentally, particularly when the number of conditions or the number of samples is 
small. One way to computationally “validate” such a prediction is through identifi -
cation of conserved  cis  regulatory motifs within the promoter sequences of the co- 
expressed genes (Liu et al.  2009 ). The rationale is that if these genes are indeed 
co-regulated transcriptionally, they should share conserved  cis  regulatory elements 
for binding with their common transcription regulators. From the predicted co- 
expressed genes and  cis  regulatory motifs, one can predict with confi dence that 
these genes are transcriptionally co-regulated, and even possibly predict their main 
transcription regulators using tools such as those by Essaghir et al. ( 2010 ) or by 
Qian et al. ( 2003 ).  
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  Fig. 2.2    Gene-expression levels associated with the energy metabolism of glucose (both glyco-
lytic fermentation and oxidative phosphorylation) and fatty acids plus the TCA cycle in nine can-
cer types. The y-axis is a list of genes involved in four metabolic pathways: oxidative 
phosphorylation, fatty acid metabolism, TCA cycle and glycolysis; and the x-axis is a list of nine 
cancer types, including three stages of basal cell carcinoma (BCC) and melanoma, respectively. 
Each entry is the average log-ratio of expression levels between cancer samples and the matching 
control samples in different cancer types. The side-bar on the  right  shows the gray-level code for 
the expression level changes, with “ gray ” indicating down-regulation, “ white ” for no change and 
“ black ” denoting up-regulation. Adapted from (Xu et al.  2012 )       

 

2.3  Transcriptomic Data



52

2.3.2     Bi-clustering Analysis 

 Bi-clustering is a generalized form of clustering analysis, which aims to identify 
co-expressed genes among some to-be-identifi ed subgroups of samples, but not 
among all samples. Such a technique is particularly useful for discovering sub- 
types, stages or grades of a cancer (see Chap.   3     for details). Figure  2.3  shows one 
example of signature genes for gastric cancer stages identifi ed through a bi-
clustering analysis. Specifi cally, 42 genes are found to exhibit distinct patterns 
for a group of 80 gastric cancer samples (one sample from each patient) grouped 
according to their stages (Cui et al.  2011 ). Interestingly the samples assigned to 
stage III exhibit two distinct expression patterns, with samples on the left clearly 
showing different patterns from those on the right, suggesting that these patients 
may actually fall into fi ve different stages such as stage I, II, IIa, III and IV, 
rather than four as proposed by the pathologists who analyzed these samples 
(Cui et al.  2011 ).

   A bi-clustering problem is computationally much more diffi cult to solve than a 
clustering problem since it involves two variables, i.e., genes to be identifi ed as co- 
expressed and samples to be found to have similar expression patterns, compared to 
only one variable, i.e., co-expressed genes in traditional clustering analyses. A few 
computer tools have been published for identifi cation of bi-clusters in gene- 
expression datasets such as QUBIC (Li et al.  2009 ) and BicAT (Barkow et al.  2006 ). 
After bi-clusters are identifi ed, similar analyses about regulatory relationships can 
also be carried out as above to predict the possible transcription regulators for each 
bi-cluster.  

  Fig. 2.3    A heat-map of gene-expression changes of 42 genes, with each row representing one 
gene and 80 gastric cancer samples  versus  the matching control samples, with each column repre-
senting one sample, which are grouped into four stages: I, II, III and IV, with  light gray ,  dark gray  
and  black  representing up-, down-regulation and no changes, respectively. The fi gure is adapted 
from (Cui et al.  2011 )       
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2.3.3     Pathway (or Gene Set) Enrichment Analysis 

 Pathway enrichment analysis is a way to map up- or down-regulated genes to higher 
level functional organizations such as biological pathways, networks or gene sets 
that are each known to be relevant to cancer or cancer-related. The basic idea is to 
homology-map the identifi ed up-regulated (or down-regulated) genes to known 
pathways in pathway databases such as KEGG, REACTOME (Croft et al.  2011 ) or 
BIOCARTA, and then assess if a specifi c pathway has substantially more genes 
mapped to it than by chance, measured using statistical signifi cance values. For 
example, DAVID is one popular tool for doing pathway enrichment analysis. 
Basically, it homology-maps a set of given genes to pathways in the above data-
bases, then assesses the statistical signifi cance of having  K  given genes in the given 
set mapped to a specifi c pathway using  κ  statistics, i.e., a chance-corrected measure 
of co-occurrence, and predicts that a pathway is enriched by the given gene set if its 
statistical signifi cance is above some threshold (Huang et al.  2007 ). Figure  2.4  
shows one enriched pathway by up-regulated genes in gastric cancer.

   With the increasing needs for studying more complex analysis problems based 
on gene-expression data, there is clearly an urgent necessity for more powerful anal-
ysis techniques. A few are listed here, which could defi nitely benefi t from the 
involvement of researchers equipped with advanced statistical analysis techniques.

    1.     Inference of causal relationships : Analyses discussed above, such as clustering 
or bi-clustering, can provide association relationships among activities of genes 
or pathways through detection of correlations among their expression patterns. 
Clearly cancer researchers could benefi t even more if such analyses can be 
extended to infer causal relations among genes or pathways with altered expres-
sion patterns. 

 Causality has been diffi cult to derive due to the nature of the problem (Pearl 
 2009 ). Many may remember the argument made by the tobacco industry when 
being presented with statistical data showing that smokers have higher probabili-
ties of developing lung cancer than non-smokers. The industry offi cials argued 
that such data do not necessarily imply that smoking causes cancer, pointing out 
the following:  there could be an unknown genetic factor that gives rise to a 
 sub- population who enjoys smoking and has a higher propensity to develop lung 
cancer.  Logically, this argument holds. Hence, in order to prove that smoking 
indeed causes lung cancer, one would need to demonstrate that individuals who 
are forced to smoke, regardless if they like it or not, are at higher risk of develop-
ing lung cancer than those who are forced not to smoke. This would then rule out 
a possible contribution from genetic factors as suggested by the defense lawyers 
of the tobacco industry. In general, inference of causality is fundamentally hard. 
Fortunately, there have been some interesting developments in theoretical stud-
ies on causal relationships. One example is the development of  causal calculus  
by Pearl ( 2009 ). Application of this or other causal theories to the information- 
rich gene-expression-based causality analyses would help to advance the fi eld in 
a profound way.   
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   2.     De-convolution methods for expression data collected on cancer tissues : One 
challenge in analyzing gene-expression data collected on cancer tissues is that 
the data are not from a homogeneous cell population, but instead a collection of 
different cell types with cancer cells as the dominating sub-population. It is well 
known that each sample of cancer tissue generally has other cell types such as 
macrophages and other immune cells, stromal cells, and blood vessel cells, 

  Fig. 2.4    An example of a KEGG pathway enriched with differentially expressed genes in gastric 
cancer  versus  matching controls. Each  rectangle  represents an enzyme-encoding gene and each 
 oval  represents a metabolite. An up-regulated gene is marked as  dark gray  and down-regulated 
gene marked in  light gray  while a  white rectangle  represents an enzyme whose gene is not identi-
fi ed yet. A metabolite with increased concentration is marked in  dark gray  and a decreased metab-
olite is marked in  light gray        
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although there may have been attempts to make the cell population as 
 homogeneous as possible, using techniques such as laser-directed micro- 
dissection (Emmert-Buck et al.  1996 ). The reality is that collecting highly homo-
geneous cell populations from cancer tissues is challenging and very time 
consuming. 

 Gene-expression data collected on a mixture of multiple cell types can easily 
lead to false conclusions if done without proper data processing. This issue has 
been refl ected in a common complaint from gene-expression data analysts that 
tissue gene-expression data are not reliable and are diffi cult to compare across 
different samples. One key reason is that tissue samples collected by different 
labs may have been processed using different procedures so that the sub- 
populations of different cell types may be different from those  in situ.  Moreover, 
different sample-processing procedures may lead to systematic changes in the 
sub-populations but in different ways, thus making tissue gene-expression data 
not easily comparable. 

 It is our belief that techniques in statistical analysis, properly applied, can aid 
immensely in resolving the issue by de-convoluting the observed gene- expression 
data into expression levels contributed by different cell types. The basic idea of 
one such de-convolution technique is as follows. Each cell type has its unique 
functional characteristics. For example, cancer cells are the only cell type in the 
tissue that divides rapidly, while fi broblasts are the only cell type that synthesizes 
the components of the extracellular matrix. These unique functional characteris-
tics of different cell types are refl ected by their gene-expression data. Specifi cally, 
it is expected that each cell type can be represented (or approximated) by a set of 
expressed genes unique to the cell type, along with the cell type-specifi c correla-
tions among the expression levels of different genes. Such cell type-specifi c 
(condition-invariant) correlations among their genes can possibly be represented 
in some generalized form of a covariance matrix, which can be considered as the 
 signature o f individual cell types. To derive such a signature, one needs unam-
biguous gene-expression data of specifi c cell types collected under multiple and 
different conditions, allowing the capture of the invariance among the correla-
tions between expression patterns of individual genes. 

 With such a reliable de-convolution tool, one can decompose each gene- 
expression dataset collected on cancer tissues into gene-expression contributions 
from different cell types. Then, one can analyze the gene-expression data pre-
dicted to be solely associated with cancer cells or other cell types such as macro-
phages to understand the interplay between cancer and immune cells. Such 
decomposed datasets of cancer samples at different stages have the potential of 
enabling one to realistically study a range of important problems in elucidating 
the complex relationships among different cell populations in each cancer niche, 
which are not feasible with the current experimental techniques.   

   3.     Development of an infrastructure in support of the study of cancer systems 
 biology : Another area where computational statistical techniques can make a 
fundamental contribution is in characterization of cancer microenvironments and 
in linking micro-environmental factors to the evolutionary trajectories of specifi c 
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cancer tissues. While experimental studies of the evolving microenvironment of 
a cancer  in vivo  may not be feasible, computational analyses of gene-expression 
data could help to solve such a problem. The premise is as follows. When the 
microenvironment changes, such as changes in (1) the composition and physical 
properties of the pericellular matrix, (2) the level of hypoxia, (3) the ROS level, 
(4) the pH level and (5) the sub-population sizes of different cell types in the 
stromal compartments (see Chap.   10    ), some genes will respond by changing 
their expression levels. For example, when the cellular level of oxygen changes, 
the expression patterns of the  HIF1  (hypoxia-induced factor) and  HIF2  genes 
change, as discussed in Chap.   1    . By carefully analyzing gene-expression data 
collected under specifi c conditions on relevant cancer cell lines, one should be 
able to train predictors for changes in each aspect of the microenvironment based 
on their relationships refl ected by gene-expression data. Such prediction capa-
bilities will enable cancer researchers to examine how micro-environmental fac-
tors change as a cancer evolves and to link such information to cancer phenotypes, 
hence possibly generating new understanding about how microenvironments 
affect cancer progression and cancer phenotypes.       

2.4     Metabolomic Data 

 Our own experience has been that transcriptomic data represent probably the most 
information-rich data that are relatively straightforward to obtain for cancer studies. 
Such data are particularly useful for gaining a big-picture view and for the deriva-
tion of rough models for a specifi c mechanism, while genomic and epigenomic data 
can provide useful complementary information. Transcriptomic data, however, do 
not always portray an accurate picture regarding the activity of a pathway. This is 
because they measure only the intermediates for making the functional parts, the 
proteins, of the pathway; others, such as those constitutively expressed, will of 
course not appear as altered gene expressions. Clearly, it is highly desirable to have 
protein expression data. However, proteins are notoriously diffi cult to study, much 
more complex than, say, transcripts, as proteins may have different post- translational 
modifi cations and splicing variants, which are not amenable to the current high- 
throughput techniques. Consequently, proteomic data have not been as widely used 
as transcriptomic data in cancer studies. Metabolomic data can, however, assist in 
fi lling the void due to the lack of protein level information since they provide infor-
mation on the substrates and products of proteins, specifi cally enzymes. 

 As of now, over 40,000 metabolites have been identifi ed in human cells accord-
ing to the Human Metabolome Database (HMDB) (Wishart et al.  2007 ,  2009 ,  2013 ). 
These metabolites can be intermediates or products of cellular metabolism, which 
include the basic metabolites such as amino acids, nucleotides, alcohols, organic 
acids and vitamins, and complex metabolites such as cholesterol and steroid hor-
mones. By analyzing the quantitative data of metabolites associated with a specifi c 
metabolic pathway, it is possible to make a generally accurate estimate of the 
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 activity level of the pathway. For example, glucose-6-phosphate, fructose-6- 
phosphate, glyceraldehyde 3-phosphate, phosphoenol-pyruvate, pyruvate and lac-
tate are the main metabolites of the glycolytic fermentation pathway (see Fig.   1.4    ), 
and their relative abundances provide accurate information about the activity level 
of the pathway. By carrying out metabolite fl ux analyses (Varma and Palsson  1994 ) 
based on the pathway information and the measured quantities of these metabolites, 
one can infer if some of these intermediates or end products may be directed towards 
other metabolic pathways, in addition to being part of the glycolytic pathway. 

 Metabolic fl ux analysis generally applies to any well-established biological path-
way, such as those in central metabolism. That is, with all the relevant reactions and 
the encoding genes known, metabolic data can be used in conjunction with the 
matching transcriptomic data, to infer the fl ux of a specifi c molecular species such 
as carbon or nitrogen. In essence, this provides fl ux information of different ele-
ments across an entire network, which preserves balances between the total input 
and the output elements for each reaction, hence providing a systems-level repre-
sentation of the fl ux distribution across all the branch points in the network. 
Identifi cation of unbalanced reactions, i.e., the total number of carbons into a reac-
tion is different from that out of the reaction, can help to detect previously unknown 
branches involved in the relevant reactions. This type of analysis can be used to 
identify possible relationships between two known metabolic pathways, such as 
detecting possible metabolic relationships between the glutaminolysis pathway 
(McKeehan  1982 ), which tends to be up-regulated in cancer cells, and other meta-
bolic pathways, or detection of relationships between cholesterol metabolism and 
phospholipid metabolism in metastatic cancer (see Chap.   11    ). For example, an anal-
ysis like this has led us to detect that some metabolites of the glycolysis pathway 
become substrates of another metabolic pathway, the  hyaluronic acid synthesis  
pathway (see Chap.   6    ). When reaction rate constants are available or can be esti-
mated for all the relevant enzymes, one can identify the rate-limiting steps in a 
pathway, thus enabling one to undertake detailed mechanistic studies of a biological 
process. 

 Both high-resolution mass spectrometry (MS) and nuclear magnetic resonance 
(NMR) spectroscopy have been used to identify metabolites present in cells and in 
tissue samples, each having their own advantages and limitations. MS can provide 
quantitative measures for up to 1,000 different metabolite species, but it suffers 
from relatively low repeatability (Boshier et al.  2010 ). In comparison, NMR can 
provide highly accurate measurements of metabolites but is limited in the number 
of metabolite species in each experiment. With either type of instrument, one can 
obtain quantitative measures of numerous metabolite species. 

 When coupled with transcriptomic data and functional annotations of genes, 
metabolomic data can be used to infer the detailed metabolic pathway that may 
produce specifi c metabolites. Specifi cally, for each experimentally identifi ed metab-
olite in a sample, one can search for enzymes among the expressed enzyme- encoding 
genes that may be responsible for its synthesis through comparisons against the 
Enzyme Classifi cation (Bairoch  2000 ) or KEGG database. Both of these databases 
contain information about enzymes and substrates that can lead to the production of 
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a specifi c metabolite. If there is more than one candidate, a selection can be inferred 
by fi nding the one that is most consistent with the available transcriptomic and func-
tional annotation data, i.e., the enzyme-encoding gene is expressed and the substrate 
is among the identifi ed metabolites. By repeating this process, one can create a 
pathway consisting of the identifi ed enzymes along with the identifi ed metabolites. 
Although one cannot expect to derive all the relevant enzymes along the pathway, it 
is generally possible to develop a crude model based on our own experience. In 
addition, it is possible to expand a pathway model through careful applications of 
the transcriptomic data and the metabolomic data collected to identify previously 
unknown or poorly studied branches of well-studied pathways. For example, by 
carefully analyzing the metabolites associated with glycolysis, one can possibly 
identify those that serve as intermediates between glycolytic metabolites and 
metabolites involved in the synthesis of hyaluronic acids as detailed in Chap.   6    . 

 There are a number of databases for human metabolomic data in the public 
domain, including the HMDB, BiGG (metabolic reconstruction of human metabo-
lism) (Schellenberger et al.  2010 ) and the Tumor Metabolism database (The-Tumor- 
Metabolome  2011 ). Another useful database is Brenda (Scheer et al.  2011 ), which 
provides the reaction parameters of various enzymes. All these databases provide 
useful information needed for reconstruction of specifi c metabolic processes in nor-
mal and cancer cells.  

2.5     Patient Data 

 Knowledge of patient data is essential for the correct interpretation of their respec-
tive  omic  data. People of different gender, age and race, and with different histories 
of smoking, alcohol consumption and health problems, could have different base-
line gene-expression levels. It was noted, from our previous studies, that some genes 
are sensitive to one aspect of a person’s attributes, such as age or gender, while other 
genes may be more sensitive to other attributes. And some genes are attribute- 
independent. For example, based on our analysis on gene-expression data of 80 
gastric cancer tissues and their matching tissues from 80 patients (see Appendix of 
Chap.   3     for details of the dataset), it was found that the expression levels of some 
genes are age-dependent, gender-dependent and smoking history- dependent, while 
other genes are, in large part, independent of any of these features (Cui et al.  2011 ). 
When working with these datasets, it was noted that the baseline expression levels 
of 143 genes were highly age-dependent, including  MUC1  (mucin 1),  UBFD1  
(ubiquitin family domain 1) and  MDK  (neurite growth-promoting factor 2). In addi-
tion, 59 genes were gender-dependent; these included  WNT2  (wingless- type MMTV 
integration site family, member 2),  ARSE  (arylsulfatase E) and  KCNN2  (potassium 
intermediate/small conductance calcium-activated channel, subfamily N, member 
2) (see (Cui et al.  2011 ) for details). Similar analyses can be carried out on depen-
dence using various lifestyle habits such as smoking and medications. 
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 Knowing such information, one then needs to make age or gender corrections on 
the observed gene-expression data before interpreting the data for functional infer-
ence. The detailed correction scheme depends on the actual relationship between a 
specifi c attribute and the gene-expression levels. Various normalization techniques 
and software tools are publicly available for this purpose.  

2.6     A Case Study of Integrative  Omic  Data Analyses 

 We present an example here to show how integrative analyses of multiple  omic  and 
computational data types can lead to new insights about cancer mechanisms. The 
main question being addressed here is:  What makes metastatic cancers grow sub-
stantially faster than their primary cancer counterparts ? While a detailed model for 
this problem is given in Chap.   11    , the current focus is on how this problem can be 
approached through transcriptomic data analyses coupled with limited metabolomic 
data analyses. 

 To address this question, all the transcriptomic data of metastatic cancers, along 
with their corresponding primary cancers, were collected on the Internet. Sixteen 
large sets of genome-scale transcriptomic data covering 11 types of metastatic and 
corresponding primary cancers were extracted from the GEO database, including 
breast to bone, breast to brain, breast to liver, breast to lung, colon to liver, colon to 
lung, kidney-to-lung, pancreas to liver and lung, and prostate to bone and liver. The 
detailed information of these datasets is given in Chap.   11    . 

 The fi rst question addressed is:  Which genes are consistently up-regulated in 
metastatic cancers in comparison with their corresponding primary cancers across 
all these datasets ? Simple statistical analyses led to the identifi cation of about 100 
such genes. 

 The second question asked is:  What do these genes do in terms of cellular 
function(s) ? Pathway enrichment analyses of these genes using DAVID against 
KEGG, REACTOME and BIOCARTA revealed that the most signifi cantly enriched 
pathway was “cholesterol uptake and metabolism”. Two questions were then asked: 
(a)  What does cholesterol do in metastatic cancer cells ? And (b)  Why do metastatic 
cancer cells need more cholesterol , as suggested by the observation that at least one 
cholesterol-containing lipoprotein transporter gene,  SRB1  (scavenger receptor B), 
 LDLR  (low density lipoprotein receptor) or  VLDLR  (very low density lipoprotein 
receptor) was substantially up-regulated compared to the corresponding primary 
cancers except for some brain metastases. These metastases synthesize cholesterol 
 de novo  as cholesterol-containing lipoproteins probably could not enter brain tissue 
due to the blood-brain barrier (Bjorkhem and Meaney  2004 ). 

 Here, only the fi rst question is considered. It was noted that multiple  CYP  (cyto-
chrome P450) genes are up-regulated in each metastatic cancer type: these genes 
encode enzymes for oxidizing cholesterols to various oxysterols or bile acids. Some 
of these oxysterols are further metabolized to steroid hormones such as estrogens, 
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androgens or steroidogenic derivatives by various enzymes whose genes show 
 substantially increased expression levels in comparison with their corresponding 
primary cancers. A number of these steroid products can bind with and activate dif-
ferent nuclear receptors, such as  FXR  (farnesoid X receptor) and  ER  (estrogen 
receptor) (see Chap.   11    ). Various growth-factor receptors such as  FGFR  (fi broblast 
growth factor receptor) and  EGFR  (epidermal growth factor receptor) are up- 
regulated in different metastatic cancers, some of which can be directly activated by 
oxysterols and/or steroid hormones, whose abundances tend to be substantially 
elevated in metastatic cancers. For the other growth factor receptors, strong correla-
tions between their gene-expressions and the expression patterns of the various 
nuclear receptors are observed across different metastases, thus suggesting the pos-
sibility of a functional relationship between the activation of the two sets of recep-
tors. Based on more detailed analyses and validation, a mechanistic model for how 
metastatic cancers utilize oxidized cholesterols to accelerate their growth is pre-
sented in Chap.   11    . Similar integrative analyses of multiple types of data can be 
carried out to derive the mechanistic models for a large variety of poorly understood 
cancer-related processes if one can ask the right questions that could be answered 
through analyses and mining of the relevant  omic  data.  

2.7     Concluding Remarks 

 A substantial amount of information concerning the activities of individual bio-
chemical pathways, their dynamics and the complex relationships among them, and 
with respect to various micro-environmental factors, is hidden in the very large pool 
of publicly available cancer  omic  data, including transcriptomic, genomic, metabo-
lomic and epigenomic data. Powerful statistical analysis techniques can aid 
immensely in uncovering such information if one poses the right questions. Such 
focused questions create a framework for hypothesis-guided data analysis and min-
ing to check for the validity of the formulated hypothesis, as well as for guiding the 
formulation of further questions, which may ultimately lead to the elucidation of 
specifi c pathways or even possibly causal relationships among the activities of dif-
ferent pathways. More powerful analysis tools for different  omic  data types are 
clearly needed in order to address more complex and deeper questions about the 
available data such as de-convolution of gene-expression data collected on tissue 
samples consisting of multiple cell types and inference of causal relationships. 
Integrative analyses of multiple types of  omic  and computational data will prove to 
be the key to effective data mining and information discovery. A large number of 
examples are presented throughout the following chapters regarding how best to 
address various cancer biology inquiries, including fundamental questions, through 
mining the available  omic  data.     
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